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FOREWORD

This report is one of a series prepared by The Boeing Vertol Company
Philadelphia, Pennsylvania for the National Aeronautics and Space
Administration, Ames Research Center, MOffett Field, California unde
contract NAS2-6598. The studies reported under Volumes I *hrough

IV and VIII through X were jointly funded by NASA and the U.S. Army
Air Mobility Research and Development Laboratory, Ames Directorate.
Volumes V through VII were funded by the U. S. Air Force Flight

Dynamics Laboratory, Wright Patterson Air Force Base, Ohio.

This contract was administered by the National Aeronautics and. Space
Administration. Mr. Richard J. Abbott was the Contract Administra-
tor, Mr. Gary B. Churchill, Tilt Rotor Research Aircraft Project
Office, was the Technical Monitor, and coordination and liaison
with the U.S. Air Force Flight Dynamics Laboratory was through

Mr. D. Fraga. The Boeing Vertol Project Engineer for the work
reported in Volume X was Mr. F.J. McHugh.

The complete list of reports published under this contract is as
follows:

Volume I -- Conceptual Design of Useful Military and/or
' Commercial Aircraft, NASA CR-114437
Volume II -- Preliminary Design of Research Aircraft, NASA
CR-114438
Volume III -- Overall Research Aircraft Projéct Plan,

Schedules, and Estimated Cost, NASA CR-114439

Volume IV ~-- Wind Tunnel Investigation Plan for a Full
Scale Tilt Rotor Research Aircraft, CR-114440

Volume V -- Definition of Stowed Rotor Research Alrcraft,
NASA CR-114598

Volume VI -- Preliminary Design of a Composite Wing for
Tilt Rotor Aircraft, NASA CR-114599

Volume VII -- Tilt Rotor Flight Control Program Feedback
‘ Studies, NASA CR-114600

Volume VIII - Mathematical Model for a Real Time Simulation

of a Tilt Rotor Aircraft (Boelng Vertol Model
222), NASA CR-114601

Volume IX -- Piloted Simulator Evaluation of the Boeing
Vertol Model 222 Tilt Rotor Aircraft, NASA CR-
114602

Volume X -- Performance and Stability Test of a 1/4.622

Froude Scaled Boeing Vertom Model 222 Tilt Rotor
Aircraft (Phase I), NASA CR-114603
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ABSTRACT

Wind tunnel test data obtained from a 1/4.622 Froude scale Boeing
Model 222 with a full span, two prop, tilt rotor, powered model

in the Boeing V/STOL wind tunnel are reported. Data were taken

'in transition and cruise flight conditions and include performance,
stability and control and blade loads information. The effects

of the rotors, tail surfaces and airframe on the performance and
stability are isolated as are the effects of the airframe on the
rotors.,

The rotors are dynamically representative of the full scale aircraft
rotor tested under NASA Contract NAS2-6505. Predicted rotor fre-
quencies were vefified, both static and rotating, and since they
influence rotor response characteristics, correlation for stability

and blade load data is included.
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SUMMARY

The primary objective of this wind tunnel test program was to obtain
steady state rotor and aircraft loads, aerodynamic and aeroelastic
characteristics of a tilt rotor model. A 1/4.622 scale full span,

powered model that was dynamically scaled from the Model 222 Tilt

Rotor Research Aircraft was utilized.

Testing accomplished was only'a portion of the first program of
Phase IV of NASA contract NAS2-6598. Model mechanical and instru-
mentation problems prevented completion of the program. This report
summarizes the test data obtained, from mid transifion into the
cruise regime, and is divided into performance, stability and

control, rotor loads and dynamics.

Performance

Performance data waé obtained for the rotor, airframe and aircraft
shdwing the effects of pitch and yaw attitude as well as the effects
of flap deflection, rotor cyclic and rotor collective in transition.
Flap deflection and lateral cyclic have a slight effect on rotor
pefformance in mid transition and cruise. Longitudinal cyclic pro-
duces an effect equivalent to 40 percent of that produced by collec-
tive in transition, but has a negligible effect on cruise rotor per-
formance. The airframe characteristics presented in Figure 1, in-
dicate that wing stall occurs at approximately l4-degrees while the
tail provides sufficient 1ift to delay total airframe stall to 17-
degrees. Total aircraft performance in transition is presented in
Figure 2, defining the lift and propulsive force characteristics.

Imposed on the figure is an aircraft 1lift coefficient of 2.45 which

represents the full scale vehicle at a gross weight of 13,500 pounds

FORM 46284 (2/66)

SHEET xiii




REV LTR

NUMBER D222-10053-1
e SVMVEING ovranve

Accounting for the difference in drag between the model and the air-

craft (ACp = 0.1) indicates that "lg" transition flight can easily

be achieved. Similar data was obtained in cruise up to 182 feet per

second (225 knots equivalent full scale speed) and is presented in

Section 4.

Stability and Control

In conjunction with the performance testing, stability and control
data was obtained showing the effects of pitch and yaw attitude

as well as the effects of aircraft control, rotor cyclic and collec-
tive in transition. The effect of flap deflection on rotor normal
force and pitching moment is very slight for the mid transition
speed of 72 feet per second (90 knots equivalent full scale speea)
with a nacelle incidence of 4l.6-degrees. Rotor longitudinal stabi-
lity characteristics were obtained for a nacelle incidence of 30-
degrees at this same speed and indicates that the rotor stability
derivatives are increasing as the nacelle incidence decreases.
During transition from hover to cruise the major portion of control
is obtained from rotor cyclic and collective pitch. Summarized in

Section 5 are the rotor force and moment derivatives with cyclic at

the mid transition test condition.

The rotor stability derivatives obtained during the yaw testing in
cruise were not significantly effected by flap deflection. The

effect of 1lift is quite evident in Figure 3 by the distinét change
in rotor normal force level. Data obtained from the pitch sweeps,
define the stability derivatives including the wing lift variation

with angle of attack as well as the flap effect.
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Figure 4 presents this comparison, including the testing performed
«t all speeds or advance ratios. The area between the trends ob-
tained from yaw sweeps and pitch sweeps is a result of the wing
lift influence and is indicated by the shaded area. The 1lift in-
fluence on the force derivatives appears to be an advance ratio
squared (p?) and the influence on the moment derivatives appears to
be a u* effect. As seen in the normal force and pitching moment
trend the wing lift effect on the rotor produces a destabilizing

contribution to the aircraft stability and must be accounted for in

analyzing the aircraft.

Figure 4 presents a concise summary of the rotor derivatives as

influenced by forward speed. It indicates a significant increase
in normal force derivative with speed while the pitching moment
derivative is decreasing and becoming stable at an advance ratio

of approximately 0.66.

Cyclic effectiveness was investigated in the cruise regime to define
inputs into the low rate feedback system for blade load alleviation.

A summary of the cyclic derivatives is presented in Section 5.

Stability and control data were obtained for the transition condi-
tion at a tunnel speed of 72 fps representing a full scale equiva-
lent velocity of 90 knots. Results of the tests indicate adequate
longitudinal and directional stability at all conditions tested.
Generally the lift curve slope C; 1is lower than estimated and dCp
°‘ acy,

indicates a neutral point location much further aft than pre—'

dicted at the test Reynolds number of 0.6x10° for the rotors off
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airframe with tail on as indicated in Figure 5. Addition of the
rotors results in a forward shift of neutral point and a substantial
increase in lift curve slope. Directional stabiliﬁy is.decreésed
with addition of rotors but is still adequate. The tail contribuf

tion to directional stability is higher than predicted.

Control effectiveness is indicated to be good in transition. The
combination of aircraft and rotor controls yields quite high control|
power at all conditions. Spoiler effectiveness with flaps extended
is indicated to be lower than predicted, szax = 0.0706 at 45-degree
§p compared to 0.100. This is believed to result at least partially
from the low Reynolds number resulting in flow séparation over the
flap upper surface with the spoiler closed. Rudder effectiveness
agrees well with predictions and elevator effectiveness is indicated
to be lower than predicted, Cmde =-,023 compared to -.031 predicted.
Change in pitching moment coefficient with longitudinal cyclic,

CmBl' is, however, higher than predicted, -.122 compared to -.0837

predicted.

Aircraft stability derivatives derived from test data for the cruiseg
configuration follow the same trends as for the transition configura
tions. The longitudinal stability is presented in Figure 6 indi-
cating the increments of stability resulting from the horizontal
tail and rotor. An adequate longitudinal stability level is indi-
cated for the tail on configurations at all conditions tested.

Lateral/directional stability data indicates an adequate level of

stability.
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Control power about all axes is indicated to be High in the cruise
configuration where all control for maneuver is derived from the
airplahe control surfaces. Elevator effectiveness is indiéated to
be lower than predictéd, Cm5e=-.0242 compared to -.0310 predicted.
Adequate longitudinal control power, with +20-degrees elevator de-
flection, is available for all cruise trim and maneuver require-
ments. Spoiler rolling moment effectiveness is indicated to be
higher than predicted and aileron rolling moment lower than pre-
dicted. Rudder yawing moment effectivegess, Cnér' and flap lift
effectiveness, CLF' agree well with predictions. The application
of the cyclic for blade load minimization as would be achieved with

low rate feedback produces a stabilizing effect on the rotor as in-

dicated by the normal force trend in Figure 7.

- Rotor Loads

A definition of the blade frequency characteristics obtained during
this model test program are presented in Figure 8 together with the
prediction for hover and cruise collectives. First mode kending is
in-plane and the prediction is approximately the same as the characH
teristics obtained from blade flap bending tweaks. Second mode
bending prediction is out of plane and is lower than the chord bend-
ing tweaks. Data obtained during hover checkout define the 1 per
rev and 2 per rev crossings. From the data of Section 7.2 minimum
damping of the wing verticai bendiﬁg mode occurs at 1030 RPM indi-
cating that, in cruise, lower blade lag and wing vertical bending
coalesce at this point. This indicates that the blade lag fre-
quency is 742 CPM and verifies the cruise méde bending frequency

prediction.
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In transition the effect of flap deflection on blade loads is
equivalent to decreasing the angle of attack by 5-degrees for
minimum blade loads and increasing the minimum blade loads by the
equivalent to Z—degrees angle of attack. Cyclic éitch effects on
flap bénding loads are small but the impact on chord bending loads

is significant, being 15 times more effective than angle of attack.

In cruise the blade load data obtained from a yaw sweep is repre-
sentative of an isolated rotor. When comparing this data with that
obtained from a pitch sweep indicates a decrease of approximately

20 percent in blade loads, further verification that increased lift

has the effect equivalent to reducing the angle of attack.

Cyclic effectiveness data was obtained in cruise as baseline data
for the low rate feedback, blade load alleviation systems. A

summary of these effects is shown in Figure 9 with the manual simu- |
lation of the feedback. The blade loads are maintained at the

minimum level over a wider range of angle of attack than for the

constant cyclic case.

Dynamics

The dynamic data obtained for the model indicate that its charac-
teristics are substantially different than the full scale Model 222
and the stand upon which it was mounted introduced additional modes
which significantly alter the dynamic behavior of the model. It is
evident that this data can only be used as a base for verifying the
analytical techniques. The dynamics data has been converted to

full scale in this report.
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The predicted cruise aeroelastic stability boundaries are shown
in Figure 10 indicating that the conditions tested were stable and
fall within the region predicted to be stable. At 90 knots the
‘rotor speed was increased from 386 RPM (cruise) to 551 RPM (hover)
and the measured damping was stable. Figure 11 presents this data

showing a minimum damping of 1.5 percent as compared to 0.5 percent

for the theory. The theory has indicated it is conservative in

hover and transition in the lightly damped regions.
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2
PpTR VT
c/4 Wing quarter chord -
D Airframe drag LB
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SYMBOL
GW
HP

Ixx’Iyy’Izz

Ipvor

iN

0]

SF

af

LIST OF SYMBOLS

UNITS
Gross weight _ LB
Rotor horsepower : HP

Mass moment of inertia about the three IN-LB SEC?
axes

Moment of inertia - polar LB-FT
Nacelle incidence Deg
Nacelle shaft angle of incidence Deg
Wing incidence >, Deg
Lift : LB

Per rotor revolution ' . -

Pitching moment : FT LB
Freestream dynamic pressure 1/2pV? LB/FTZ'
Rotor radius FT
Radial location to a blade station FT
Rolling moment | FT LB
Wing area | FT?
Side Force s LB
Rotor thrust LB
Airfoil thickness FT
Ffeestream velocity : FT/SEC
Rotor tip speed - FT/SEC
Aircraft propulsive force LB
Yawing moment FT LB
Rotor blade collective pitch at the Deg

three quarter radius

Fuselage pitch deflection

FORM 46284 (2/66)

SHEET LVIII




e BVMDEING o NUMBER

REV LTR

D222-10053-1

wl

wh

SYMBOL

LIST OF SYMBOLS

Nacelle shaft pitch deflection

Side slip angle

Fuselage yaw angle (rotor azimuth angle)

Advahce ratio V/Vgp
Wing chordwise bending frequency

Blade lag rotational frequency

First mode, flapwise blade natural
frequency

Aircraft pitch frequency

Wing vertical bending frequency

Wing torsional frequency

Lower blade lag rotational frequency
Upper blade flap rotational frequency
Lower blade flap rotational fréquency
Dehsity of air

Rotor angular velocity

Integer frequency ratio

bcR
R?

Rotor solidity
Aileron deflection
Flap deflection

Spoiler deflection

Increment in coefficient

UNITS

Deg
Deg

Deg

cps
cps

cps

cps
cps
cps
cps
cps
cps

LB SEC?/FT"

Deg
Deg

Deg
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1.0 INTRODUCTION

During the technical assessment phase of Task 1 of Contract NAS2=
6598 several areas were defined where additional research is desir-
able. These included definition of aircraft characteristics and
the effects of feedback control systems, ground effect, transient
rotor loads, autdrotation and descent, and free-free aeroelastic

tests.

To permit experimental investigations in these areas, Boeing fabri-
cated a 1/4.622 Froude scale wind tunnel model of the M-222 Research
Aircraft. The selection of this scale was thé'result of meeting

the following ground rules:

1. Develop one model that will provide performance and

dynamic testing capability.

2. The scale factor must be large enough to provide a
Reynolds number of greater than 500,000 at the three-
quarter blade radius to achieve meaningful rotor

performance.

3. The model span must be less than 75% of the test section
to avoid being significantly affected by wind tunnel wall

effects.

4, The model must be capable of properly representihg the

dynamics of the full scale airplane at 400 KTS.

Boeing was awarded a contract from NASA to conduct a wind tunnel

program with this model in two phases directed at the following:

FORM 46284 (2/68)
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© Obtain steady state rotor and aircraft loads,

aerodynamic and aeroelastic characteristics

o Obtain the dynamic characteristics and boundaries

with four degrees of freedom testing

The testing accomplished was only a portion of the first program
abova when model mechanical and instrumentation problems prevented
any further useful testing until they were fixed. - Further testing
is recommended to provide data directed at achievin§ the basic

research objectives of the original program.

FORM 46284 (2/68)
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2.0 TEST OBJECTIVES

The overall objective of this test program was to provide perform-
ance, stability and control data from hover through transition

and cruise. The testing defines the unaccelerated rotor and air-
craft characteristics and loads including the elastic and dynamic
interactions associated with the full-scale aircraft. A list of the
specific test objectives is presented in Table 1 with an estiméte

of the percent completion achieved during this test program.,

A cross reference between the objectives that were accomplished and
the section of the report containing the applicable data is listed

here for rapid reference.

1. Conduct Flow Visualization Testing on Model to Determine the
Flow at the Horizontal and Vertical Stabilizer and Develop a

Satisfactory Fairing at the Wing fuselage Junction

Data was obtained from a flow visualization test conducted
prior to the fabrication of the model fuselage skins.
This is presented in Appendix E as a reprint of the

memo report summarizing the test.

2. Determine Basic Aircraft Performance and Static Stability

throughout'Transition and in the Airplane Mode

Rotor, airframe and total aircraft performancé is presented
in Sections 4.1 and 4.2 for the transition and cruise regime.
Static stability is presented in Sections 5.1 and 5.2 for
rotor, airframe and total aircraft characteristics in

transition and cruise.

FORM 46284 (2/68)
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3. Determine the Control Power Available throughout Transition
and Cruise and Define the Control Scheduling Required to
Minimize Cross Coupling Between Axes

Section 5.1.3 provides data summarizing the control
power and mixing in transition. Control effective-

ness in cruise is presented in Section 5.2.3.

4. Determine the Effect of(Flaﬁ Setting on}Performance,‘Trim
Requirements and Control through Transition

The effect of flap deflection on rotor performance in
btransition is shown in Section 4.1.1 and on the aircraft
performance in Section 4.1.2. Flap effects on rotor
and aircraft performance is presented in Sections 4.2.1
and 4.2.2 for the beginning of the cruise regime. The
effects of flap deflection on trim and control are
defined in Sections 5.1.2 and 5.1.3 in transition. Flap
effects are also examined at the beginning of the cruise
regime and Sections 5.2.2 and 5.2.3 present these effects

on trim and control.

5. Investigate the Variation of Blade Loads through Transition

as a Function of Nacelle Incidence, Speed, Cyclic Pitch

The blade load data in transition is presented in Section
6.2 for transition. Additional data is provided in Sectior
6.3 defining the effects of attitude, forward speed and

cyclic pitch on blade loads in cruise.

FORM 46284 (2/66)
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6. Investigate the Effects of Ground Proximity, during Low Speed
Transition Flight, on Static Stability, Control Power and
Blade Loads. Investigate any Non-Periodic or Random Load

- Variations Associated with Ground Effect
No data was obtained for this objective.

7. Determine Inception and Boundaries for Wing Stall and Tail

Stall through Transition and Cruise Modes

Wing stall data was obtained and is presented in Section
4.1.2 for transition and 4.2.2 for cruise with the rotors

removed.

8. Develop Input Signals, Signal Shaping and Output Mixing for
a Feedback System Aimed at:
(a) Minimizing Blade Loads through Transition

(b) Improving Aircraft Static Stability in Transition
and Cruise

(c) Minimizing Blade Load Variation with Speed and Angle
of Attack in the Cruise Mode
Cyclic effectiveness data was obtained in transition and
cruise which can be used for &fining the gains and signal

shaping for the low rate feedback system

The effects of cyclic on blade loads are presented in
Sections 6.2.3 and 6.3.3. The effects on aircraft
stability is a result of changes in the rotor stability
characteristics shown in Sections 5.1.3 and 5.2.3. The

impact on total aircraft stability is shown in 5.2.2.

FORM 46284 (2/660)
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9. Examine the Lightly Damped Air Resonance Mode and Determine

the Effect of Cyclic Feedback on this Mode

Dynamic data acquired during this testing addresses

the lightly damped modes and is discussed in Section 7.2

10. Examine the Compatibility of the Feedback Characteristics
to Meet the Various Objectives of Item 8 and 9 and Develop

a Single Compromise System

No testing was accomplished with the feedback systems

operating.
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TABLE 1
PHASE I - TEST PROGRAM EVALUATION % COMPLETE
TEST OBJECTIVES __Flight Modes
Transition| Cruise
1, Conduct Flow Visualization Testing on 0% . |Completed
Model to Determine the Flow at the . Prior to
Horizontal and Vertical Stabilizer Model
and Develop a Satisfactory Fairing at Fabrica-
the Wing Fuselage Junction _ . tion
2. Determine Basic Aircraft Performance ..... 50% 50%
and Static Stability throughout .......... 50% 80%
Transition and in the Airplane Mode
3. Determine the Control Power Available 50% 80%

throughout Transition and Cruise and
Define the Control Scheduling Required
to Minimze Cross Coupling Between Axes

4. Determine the Effect of Flap Setting 50%
on Performance, Trim Requirements
and Control through Transition

5. Investigate the Variation of Blade
Loads throughout Transition as a
Function of

Nacelle Incidence : 50%
Speed 50%
Cyclic Pitch 50%
6. Investigate the Effects of Ground 0%

Proximity, during Low Speed Transition
Flight, on Static Stability, Control
Power and Blade Loads. Investigate
any -Non-Periodic or Random Load
Variations Associated with Ground

Effect

7. Determine Inception and Boundaries
for Wing Stall 50% 75%
and Tail Stall through Transition and 50% 50%

Cruise Modes

8. Develop Input Signals, Signal Shaping
and Output Mixing for a Feedback System

Aimed at:
(a) Minimizing Blade Loads through
Transition 15%
(b) Improving Aircraft Static Stability
in Transition and Cruise 15% 25%

(¢) Minimizing Blade Load Variation with
Speed and Angle of Attack in the 253
Cruise Mode A
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‘TABLE 1 (continued)
PIASE I - TEST PROGRAM EVALUATION

% COMPLETE

TEST OBJECTIVES Flight Modes

Transition Cruise

9. Examine the Lightly Damped. Air Resonance 50% 100%
Mode and Determine the ,
Effect of Cyclic Feedback on this Mode 0% 0%

10. Examine the Compatibility of the Feedback 0% 0%

Characteristics to lMeet the Various
Objectives of Item 8 and 9 and Develop
a Single Compromise System

SUMMARY

" <
o
oP
o
o
o0

|
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3.0 TEST INSTALLATION

This section provides a description of the model, its installation
in the wind tunnel and the data reduction methods utilized in this

test program.

3.1 MODEL DESCRIPTION

The model is a 1/4.622 scale full span, powered configuration that
is Froude scaled from the Model 222 Tilt Rotor Research aircraft
as described in Reference 1 dated March 1972. It incorporates

the 26 ft. diameter soft in-plane prop/rotor designed and tested
under NASA contract. This model, shown in Figure 12, was provided

by the contractor for this test program and has the following major

dynamically-scaled components.

1. Two 3-bladed rotors
2. Two nacelles

3. Full span wing

4, Fuselage

5. Tail

Essential model dimensions are shown in Table 2. The rotors are

defined in Figure 13 and have the same aerodynamic and aeroelastic
characteristics as the full scale rotor built under NASA contract
NAS2-6505. It has remote controlled fast acting collective pitch

and two axes fast acting cyclic pitch actuation systems.

The nacelles are joined to the wing by a pivot and have remote pitch

actuation.

The wing is crown mounted and has full span flaps and leading edge

FORM 46284 (2/60)
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umbrellas for download alleviation. Flaps are used during transi-
tion to provide additional 1lift and the outboard section of the flap
is used as an aileron for control in conjunction with outboard

spoilers.

The wing, fuselage, and empennage are dynamically sclaed from the
Model 222 aircraft and the rudder and elevator are remotely con-

trolled. The model was supported on a pedestal mount with pitch

and yaw capability.

The primary instrumentation included strain gages to obtain flap,
chord and torsion loads at the blade root. A six componént balance
in each nacelle measured the rotor forces moments and torqﬁe. A
six component main balance located in the fuselage measured air-
craft forces and moments. Strain gages were located at the wing
root to measure the flap and chord bending and torsion to define
the aerodynamic and load characteristics. Position indicators

were connected to meters to provide a visual display of the air-
craft control positions which were remotely controlled as schematic-
ally shown in Figure 14. Each rotor has an RPM and l/rev output.
Twelve thermocouple readouts provided safety monitoring of critical

motor, gearbox and cross shaft bearing temperatures.

The model is powered by a 20 HP, 11,375 RPM electric motor manu-
factured by Task Corporation. The motor drives a 3.04:1 reduction
gear box in the center fuselage which is connected by cross shafts
in the wing to a 3.09:1 reduction gear box in each nacelle. This
provides a total gear reduction from the electric motor to rotor of

9.39:1.

FORM 46284 (2/60)
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A photograph of the model under test in the cruise configuration is
shown in the top of Figure 15 and the lower portion is a left rear

quarter view showing details of the strakes, sponsohs and flaps.
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TABLE 2
MODEL DIMENSIONS

ROTOR

Number of Blades 3 '

Radius 33.75 IN.

Chord 4.078 IN.

Twist 42,5 DEG.

Airfoil Section 23021/23010-1.58

Solidity 0.115

Rotor Speed (Hover) 1185 RPM

Roior Speed (Cruise) 825 RPM

Collective Pitch Available -5 to 65 DEG.

Cyclic Pitch Available + 10 DEG.
NACELLE

Nacelle Pivot Position 40%

fin % of Wing Chord)

Rotor Disc Nacelle Pivot Distance 12.33 1IN.

WING

Airfoil Section

Span (Rotor € to Rotor g)
chord '

Area

Aspect Ratio

Flap in % of Chord

Wing Incidence

Tnickness - Chord Ratio

FUSELAGE

Diameter
Length

TAIL - HORIZONTAL

Area

Span

Aspect Ratio

Taper Ratio (CTIP/CROOT)
Root Chord

Airfoil Section
Eievators in % of Chord

634221 Modified
86.76 IN.

15.53 IN.
9.36 FT.?
5.61

30%

2 DEG.
0.21

14.69
102.50

IN.
IN.

FT.?
IN.

2.73
10.89

4.25

.384
14.05
64A010
44.1%

IN.
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TABLE 2 (continued)

TAIL - VERTICAL

Area 2.03 FT?
Span 22.75 IN.
Aspect ! atio 1.77
Taper Ratio (Cpyp/Cgroor) .35
Root Chord- ' 20.98 IN.
Airfoil Section . 64A008

Rudder in % of Chord 50.6
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MODEL 222 IN CRUISE TESTING

FIGURE 15

MODEL 222 REAR QUARTER VIEW

1/4 622 SCALE MODEL 222 INSTALLED IN THE WIND TUNNEL
TEST SECTION
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3.2 TUNNEL INSTALLATION

3.2.1 Boeing V/STOL Wind Tunnel

‘This closed circuit, continuous flow facility contains nine fixed-
pitch blades, 39 feet in diameter, which provide wind speeds up to
240 knots. The fan is powered by a 15,000 horsepower motor package
consisting of two separate motors located in a nacelle. Air travels
through the 742 foot closed circuit tunnel and is turned by vanes
into the test sectipn which is 20 feet wide, 20‘feet high and 45
feet long. Models can be positioned in the wind tunnel test section
on a sting or pedestal mount. A pedestal mount was used for the
Model 222 test. The tunnel is equipped with an air exchange system
which reduces tunnel temperature and aiso removes the turbulent air
boundary layer before it enters the test section. New air is pulled
into the wind tunnel through the inlet section of the air exchange
system located downstream from the test section. Pertinent wind
tunnel data are shown in Table 3 and the wind tunnel general

arrangement is shown in Figure 16.
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TABLE 3

CIRCUIT DIMENSIONS

Length (overall)
Width (overall)
Height (ground)

TEST SECTION DIMENSIONS

Closed
Slotted

Open Throat
Contraction Ratio
Diffuser Angle

FAN DESCRIPTION

Diameter

Blades

Motcrs (horsepower)
Nacelle

MODEL SUPPORT SYSTEM

Floor Mount

AUXILIARY SYSTEMS

Data Acquisition

BOEING V/STOL WIND TUNNEL PERTINENT DATA

347 feet (approx. square in cross section)
120 feet '
50 feet

20 feet square by 45 feet long
. 20 feet square by 45 feet long;
10 percent porosity
20 feet square by 23 feet long
6:1
6 degrees equivalent cone (maximum)

39 feet

9, fixed pitch

13,500 AaC, 1,500 pC: 15,000 total

18 feet maximum diameter by 72 feet long,
272 design rpm

12 feet by 16 feet floor insert,
custom installation

120-channel system using an IBM 1800
computer which operates independently or
linked to a central IBM 360 system
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3.2.2 Model Installation

The 1/4.622 dynamically scaled Model 222 was installed in the
Boeing V/STOL wind tunnel on a pedestal mount attached to a vaw
table located on an elevator below the test section floor. The
nominal test location of the model within the test section is shown
in Figure 17. Installation of the yaw table on the elevator
permitted lowering of the model to a working height for model
maintenance. The rotor centerline (in cruise) was nominally at a

10 foot height during test but was lowered to approximately 5 feet

for maintenance as shown in the photograph iﬁ Figure 18. The
capability of being able to raise and léwer the model also permits
testing of the model in ground effect;.however, no in ground effect
testing was conducted on the Model 222 during the test period

covered by the report.

A fixed ground plane 20 feet wide by 16 feet long and 13 inches
high was installed in the test section. The ground plane provides
a more stable boundary layer near the floor for in ground effect
testing and also provides a solid work platform when the yaw table

is lowered to position the model at a working height.
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FIGURE 18 - MODEL 222 LOWERED TO WORKING HEIGHT

22




_ NUMBER D222—10053-l
THE B”EI”E COMPANY REV LTR

3.3 DATA REDUCTION

The summary of the data reduction program is on file at the wind
tunnel for BVWT 105. The critical dimensions used as input data
for this program are presented in Table 4 and a sketch of the

palance arrangement is shown in Figure 19.

To account for model flexibility in the pitch direction the equation:

presented below are integrated in the data reduction program.

Wing Pitch Deflections

Aawl = [NFIMB- (NF +NF )cosi 4(T2RB+T3RB)sini ] K
2RB  3Rp N2 N2 1

+[FMIMB+.29AFIMB+.591(T2RB~T3RB)cosiN2+.408(T2RB+T3RB)Sini

N2
—PMZRB=PM3RB—(NFZRB+NF3RB)siniN2(.375+.365-siniNz)

- (NF2RB+NF3RB)cosi (.365 cosi 2-.192)]K
N2 N T2

Nacelle Pitch Deflections

Aa1N2 = (K3=K4cos1N2)NF2RD+K5PM2RB
~-K6T2RB cosi + Aaw
, N2 1
boiyy = (K3—K4»cosiN3)NF3RB+K5PM3RB
-K6T3RB cosiy3y + Aawl
.v = 3 + .
1n2 corr 1N2 Aol
iy3 corr = iN3 AaiN3
Rl = wing rotation due to pitching moment applied by the wing
K, = wing rotation due to pitching moment applied by the rotor
K3 = rotor disc rotation due to rotor normal force

U7
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K4 = nacelle incidence correction to rotor disc rotation

due to rotor normal force

K5 = rotor disc rotation due to rotor pitching moment

K6 = rotor disc rotation due to rotmx thrust

The sign convention utilized for the model controls is presented
in Figure 20 and a sign convention for the measured forces and

moments is defined in Figure 21.

3.4 TEST PROGRAM :

The testing acéomplished in the program is briefly summarized here
and the detail run schedule is presented in Appendix A.
1-16 End to end system check (no nacelle fairings)
17-39 Complete model with non-aerodynamic nacelle
. fairings in cruise regime
40-63 Complete model with non-aerodynamic nacelle
fairings minus rotor blades in cruise and

transition regime

64-72 Complete model with new nacelle fairings minus

rotor blades in cruise and transition regime

73-76 Complete model with new nacelle fairings minus
rotor blades and horizontal and vertical tail

in cruise and transition regime

FORM 46284 (2/66)
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77-119 Complete model with new nacelle fairings in

cruise and transition regime

120-121 Complete model with new nacelle fairings minus

horizontal and vertical tail in cruise regime
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3.5 MODEL PROBLEMS

During the assembly checkout and testing of the 1/4.622 Froude
Scale Model 222 numerous problems werelencountered. This section
will summarize reasons for the delay in the test and also the terming
tion of the testing.
1. MODEL PROBLEMS IDENTIFIED IN ASSEMBLY AND FIXED
a. Blade retention pin drilled off center in'hubs
b. Redesign control system postion pot supports
c. Fit all shells (very time consuming)

d. Balance main gearbox gear at Tinius Olsen

2. MODEL TRANSDUCER READOUT LIMITED IN CHECKOUT ROOM,

INCREASING FUNCTIONAL CHECKOUT TIME

3. MODEL FREQUENCIES NOT COMPATIBLE WITH SAFE OPERATION
WHILE ON PEDESTAL
a. Increased fuselage/pedestal pitch
b. Reduced fuselage/pedestal roll and yaw
c. Increased wing vertical bending

d. Increased vertical tail lateral bending

4. MODEL AIRRESONANCE PROBLEM ENCOUNTERED IN HOVER -

REQUIRED MODIFYING THE BLADES AND REINSTRUMENTING THEM

‘5. MODEL ELECTRONIC'S (BLACK BOX) WAS BEHIND SCHEDULE

AND THE COMPLEXITY WAS UNDERESTIMATED

6. MODEL PROBLEMS IDENTIFIED IN CHECKOUT AND TESTING

AND FIXED

FORM 46284 (2/66)
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a. Leaking gearbox oil seals

b. Nacelle gearbox.fouling

c. Rework blade pitch arms to provide proper indexing

d. Add spacers to right blade pitch arms to provide
clearance for pitch arms

e. Grind away hubs locally to provide collective
travel range

f. Grind away locally on control position pot support
to provide clearance for swashplate screw heads‘to
get full cyclic range (even this is most restricted)

g. Build and fit new nacelle covers

h. Remove gearbox to replace oil jets after accident

i. Balance hubs wiﬁhout blades

j. Balance hubs with blades

k. Rebuild blades after instability in_checkout coom

1. Repair main balance side force

m. Modified both nacelle balances to correctly account
for the rotor torque loads acting through the balance

n. Remove slop in flaps (not successful)

o. Replace inboard gages on RH blades and one LH blade
after starting with cyclic in tunnel

pP. Replaced Roulin bushing on control system readout

g. Control system short; elevator shake put in reduced
LH collective

r. Replaced clutch motor to reduce speed for manual
operation

s. Replaced several clutch coils downstairs
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t. Rebuilt clutches in tunnel to provide proper

clearance

Constant repair of broken instrumentation wiring
(replaced one wing wirepack for RH nacelle balance)
0il in 1/rev and 60/rev cover behind gearbox

Relocated l/rev pickup to permit removal without
pulling gearbox from model

Sizing of o0il return Iineé from gearboxes to balance
oil flow

Water leaks on nacelle balances - removed and sealed
Remade blade retention pins after they were reamed out

to fit blades before hubs were reworked to position pi

Model Modification Defined from Testing (see conclusions
for subsequent actionj.

a.

Redesign and fabricate new nacelle upper controls in-
cluding limit switch support bracketry. Design should
permit +10° cyclic (longitudinal and laterai) with me-
chanical stops which can be preset as a safety feature
Also provide position feedback.

Replace all model wiring with Markel wiring.

Repair blade root instrumentation.

Model control console position meters inadequate. Re-

place with digital readout or some other improvements.
Rework flap/ailerons to eliminate slop and relocate
position pots to provide direct position reading.
Clear gearbox - nacelle balance fouling

Determine proper model wing/pedestal, wing/monkey pole

stiffness properties. Modify model accordingly.

o
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TABLE 4 - WIND TUNNEL DATA REDUCTION INPUT CONSTANTS

ALL DIMENSIONS

; PER PRINT
RDINC SYM UNITSH
1 X, Horiz. Dist. from Left Nacelle Bal. FT .7083
Axis € to Ref. Body Axis
2 Yo Lat. Dist. from Left Nacelle Bal. FT 0.0
Axis € to Ref. Body Axis
3 z, Vert. Dist. from Left Nacelle Bal. FT -.2188
Axis € to Ref. Body Axis
4 X4 Horiz. Dist. from Right Nacelle Bal. FT .7083
Axis ¢ to Ref. Body Axis
5 Y3 Lat. Dist. from Right Nacelle Bal. FT 0.0
Axis € to Ref. Body Axis
6 24 Vert. Dist. from Right Nacelle Bal. , FT -.2188
Axis g to Ref. Body Axis
7 d2 Left Torque Directional Sign i.e. @S ! -1
' CW Rotation (Blade) =-1 view
from
8 d, |Right Torque Directional Sign i.e.pilot o+l
CCW Rotation (Blade) =+1 seat
9 12 Horiz. Dist. from Left Nacelle Ref. FT |{-1.0729
Body Axis to Nacelle Pivot Point
10 m, Lat. Dist. from Left Nacelle Ref. FT 0.0
Body Axis to Nacelle Pivot Point
11 n, Vert. Dist. from Left Nacelle Ref. FT 0.0
Body Axis to Nacelle Pivot Point
12 l3 Horiz. Dist. from Right Nacelle Ref. FT 1.0729
Axis to Nacelle Pivot Point
13 m, Lat. Dist. from Right Nacelle Ref. FT 0.0
Body Axis to Nacelle Pivot Point
14 ny Vert. Dist. from Right Nacelle Ref. FT 0.0
Body Axis to Nacelle Pivot Point
15 e, Horiz. Dist. from Aircraft Balance . FT 0.0
Axis ¢ to Model Body Axis
16 £, |Lat. Dist. from Aircraft Balance Axisq FT 0.0
to Model Body Axis
FORM 46284 (2/66)
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TABLE 4
INPUT CONSTANTS (continued)
ALL DIMENSIONS
PER PRINT
RDINC SYM UNITS
17 9, Vert. Dist. from Aircraft Balance Axis FT .3908
£ to Model Body Axis
18 e, Horiz. Dist. from Left Nacelle Pivot FT S +.1911
Axis to Model Body Axis
19 f2 Lat. Dist. from Left Nacelle Pivot FT +3.6150
Axis to Model Body Axis
(neglecting droop and/or bent spar)
20 g, |Vert. Dis. from Left Nacelle Pivot FT -.0794
Axis to Model Body Axis
21 e, Horiz. Dist. from Right Nacelle Pivot FT +.1911
Axis to Model Body Axis
22 £ Lat. Dist. from Right Nacelle Pivot FT -3.6150
Axis to Model Body Axis
(neglecting droop and/or best spar)
23 g3 Vert. Dist. from Right Nacelle Pivot FT -.0794
Axis to Model Body Axis
24 S Wing Area FT? 9.360
25 b Wing Span FT 7.230
26 c Wing Chord FT 1.294
27 Ry Left Rotor Radius FT 2.8125
28 R3 Right Rotor Radius FT 2.8125
2
29 AAL,|Left Nacelle Lateral Cyclic Ratio
(Left Lat.)
30 AAR,|Left Nacelle Lateral Cyclic Ratio
(Right Lat.)
31 AB, |Left Nacelle Longitudinal Cyclic Ratio
32 AAL3jRight Nacelle Lateral Cyclic Ratio
(Left Lat.)
33 AAR3|{Right Nacelle Lateral Cyclic Ratio
(Right Lat.)
34 AB3 |Right Nacelle Longitudinal Cyclic Ratio
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4:0 PERFORMANCE

The performance testing conducted during this program starts at mid
transition and continues into the cruise regime. Data is presented
for the rotor, airframe and the aircraft, showing the effects of
pitch and yaw attitude as well as the effects of flap deflection,
¥otor cyclic and rotor collective on performance. Owing to |
mechanical problems in the model control system, control settings
could not be held constant during a run. Therefore to cor;ectly'
analyze the data obtained, it was necessary to first plot the rotor
control positions and rotor thrust and power during each run. Care-
ful examination of each of these five quantities would permit a
data fairing with fixed rotor‘controls or at least a linear inter-
action between collective and longitudinal cyclic. This reduire-
ment was the result of having slop in the rotor controls as well as
the interactions between collective and longitudihal cyclic. The
following sections will address these items as they were covered

in the testing directed at Objectives 2, 4 and 7 presented in

Section 2.0.
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4.1 Transition Performance
Transition performance was obtained at 72 ft/sec and 1185 RPM rotor

speed. This is equivalent to 90 kts and 551 RPM rotor speed for the

full scale aircraft.

4.1.1 Rotor Performance

Rotor performance is presented first at é nacelle incidence of
41.6 degrees, the normal transition value at 90 kts for the full
scale aircraft. Figure 22 presents the rotor thrust coefficient
(CT) variation with rotor shaft angle of attack for flap deflections
of 20, 30 and 40 degrees. The collective, longitudinal and lateral
cyclic variation during this series of runs are presented in

Figure 23 and indicate that the collective for run 104, 40 degrees
flap deflection, is higher than for 30° or the initial part of 20°
ceflections. There-is an apparent zero shaft in the collective
between Run 104 and Runs 117 and 118. Presenting the thrust-power
coefficient variation as shown in Figure 24 indicates a similar trend|
but at a lower thrust level. Comparing the thrust and power at a
fixed shaft angle indicates that the thrust and power are both lower
for the 40 degrees flap deflection indicating that the collective -
rmvst be lower and not higher. This is indicative that individual
runs or back to back runs should provide satisfactory data but great
care must be taken when trying to extract absolute data levels form
this test data but the slopes (derivatives) are consistent and
valid. Figure 25 presents the rotor performance in yawed flight for
the flap deflection of 40 degrees. The thrust and power increase as

the yaw angle is increased and the rotor collective and cyclic for

this case are presented in Figure 26.
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Yawed flight at a nacelle incidence of 30 degrees is presented in
Figure 27. The flight speed was again 72 ft/sec with a rotor

srp=2ed of 1186 and an attempt was made to maintain the thrust_coeffi—
cient of approximately 0.0024. Thrust is slightly higher but power
is significantly higher at a nacelle incidence of 30 degrees. This
is a result of the much higher collective, 8 = 15.85° for i_ = 30°
and 8 = 12.75 for iy = 41.6 as indicated in Figure 28. To examine
the variation of this change in performance with nacelle incidence,
data was taken at intermediate values and is presented in Figure
29. Thrust and attitude were held constant as the nacelle angle
was reduced and the power variation is linear. At a nacelle

angle of 30 degrees standard angle of attack performance was ob-
tained and is presented in Figure 30 with the collective and

cyclic presented in Figure 31.

Tlie effect of longitudinal and lateral cyclic and collective on
1otor performance is shown in Figures 32 and 33 respectively.

This data was obtained during the definition of the rotor control
power in transition and also the cyclic effectiveness to be
utilized for the low rate feedback. Lateral cyclic has a very
slight effect on rotor performance but longitudinal produces large
changes in both thrust and power. Comparing its effect to that of
collective shown in Figure 33 positive longitudinal cyclic

produces approximately 40 percent of the change in thrust and power

that negative collective does.
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4.1.2 Aircraft Performance

A summary of the aircraft performance in the transitidn regime is
presented here. Figure 34 presents the rotors off airframe
performance characteristics for £he mid transition flightvcondition
ot 72 ft/sec with the nacelle incidence of 45 degrees and a flap
defiection of 40 degrees. The angle at which stall occurs for the
complete aircraft‘is approximately 17 degrees. Removing the horizoh-»
tal and vertical tail reduces this angle to approximately i4 degrees
ind: cating Wing stall occurs at this angle and the tail continues to
provide sufficient lift to delay total aircraft stall to 17 degfees.
Figure 35 presents the effect of flap deflection on total aircraft
(rotors on) performance at a tunnel speed of 72 ft/sec and a‘rotor
speed of 1186 RPM. As pointed out earlier there is some question

as to the relationship of the rotor data obtained at 40 degrees_
flap deflection and it was assumed that there was a zero shift in
collective and it‘was actually lower than was measured and therefore
the thrust was lower. The total aircraft 1lift reflects the lower
thrust but the aircraft propulsive force does notf It is approx-

imately the same as that for 30 degrees flap deflection run.

Imposed on Figure 35 is an aircraft 1lift coeffidient of 2.45 which
represents the full scale aircraft at a gross weight of 13,500 LB.
Acccunting for the difference in the drag of the model and the

aircraft (4Cp = 0.1 as discussed in Section 4.2.2), indicates that
a trim "1g" transition flight can be achieved over a range of flap
angles. Figure 36 shows the relationship of the aircraft perform—

ance for a nacelle incidence of 41.6 and 30 degrees. It indicates

that the lower nacelle incidence provides approximately ".08 g"
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acceleration for approximately 10 percent increase in power.

Performance in yawed flight is shown in Figure 37 for nacelle
incidence of 41.6 and 30 degrees. There is no significant change
in 1lift but there is an increase in propulsive force as the air-

craft is yawed for both nacelle incidence. '
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4.2 Cruise Performance

Cruise performance was obtained at speeds of 113 ft/sec to 182 ft/
sec at a rotor speed of 830 RPM with the nacelle incidence of zero.
This represents a speed range from the end of transition, 142 kts,

to 225 kts, in cruise for the full scale aircraft.

4.2.1 Rotor Performance

At the end of transition 113 ft/sec a flap deflection investigation
was made. Figure 38 presents the thrust and power coefficients for
these runs while Figures 39 and 40 define the collective and cyclic
variations. There is a trend indicated in the data that shows that
flap deflection decreases thrust and power. The variation of the

collextives and cyclics in addition to back lash in the rotor control

system prohibit quantifying this trend.

In the cruise mode, the airframe test variables were fixed and the
rotor controls were then set to minimize blade loads with cyclic

at the rotor thrust coefficient estimated for the full scale air-
craft. Figure 41 presents the performance for cruise conditions
with a flap deflectiqn of zero at speeds of 113 ft/sec to 182
ft/sec. There is a distinct increase in power with speéd but the
associatnd thrust levels overlap each other. The associated
collective and cyclic values are presented in Figures 42 through 44.
To obtain a better understanding of the performance in cruise, a

thrust power presentation was made and is shown in Figure 45.

Yaw performance at the end of transition is presented in Figure 46,

Also shown is the effect of flap deflection of 20 and 40 degrees

indicating that rotor performance decreases as the flaps are
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deflected. Figure 47 presents the rotor collective and cyclic
associated with this performance. Yawed flight performance was
obtained across the speed range of 113 ft/sec to 182 ft/sec. The
thrust and powef data presented in Figure.48 show small changes
with yaw and the collectivé and cyclic variations during these runs

are presented in Figure 49.

Parformance data obtained from the cyclic effectiveness investiga-
tion in the cruise regime are shown in Figures 50 to 53.  This

daca indicates that there is no effect of longitudinal or lateral
cyclic on rotor thrust or power in cruise. An additional verifica-
tion of this, is the rotor thrust and power obtained from the manual

siqwulation of low rate cyclic feedback shown in Figure 54.
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4.,2.2 Aircraft Performance

Aircraft performance in cruise is comprised of the rotor character-

istics defined in Section 4.2.1 and the airframe characteristics.

Figure 55 presents the variation of airframe 1lift with angle of

atzack. Two sets of data are presented for the complete model.

The aifference between run 40 and 60 is thelarger cleaner aerodyna-

mic nacelle and better fitting of the wing fuselage fillets for run

60. Run 75 is a similar test but with the horizontal and vertical

tail removed. For this run the airframe has a stall angle

of 14

degyrees which is for the wing. When adding the tail, as in run 64,

the airframe has a stall angle of approximately 19 degrees.

To

examine the airframe cruise performance requires defining the wing

efficiency and the basic airframe profile drag. Figure 56

the variation of aircraft drag coefficient with the square

shows

of the

aircraft 1lift coefficient (Cﬁ) which defines the induged drag in-

cremant. At Cﬁ=0 is the basic profile drag, CD=.l30 for run 60,

and is compared to the estimate of CD=0.030. This difference is

attributed to the poor fit of the skin panels achieved during the

test program. The slope of this curve is the relationship
induced drag to CE, which is a constant that is a function
aspect ratio and efficiency. A value of 0.89 was obtained
wing efficiency indicating good wing lift carryover across
fuselage, low drag or minimum separation wing root fairing
and rlating. The wing-fuselage juncture was tested in the

tunnel prior to fabrication of the final fuselage skins.

of the
of wing
for the
the

and wing

wind

This

testing is summarized in Appendix E and indicates a fairihg with no

separatcion in the cruise angle of attack range.
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Performance data obtained from the model during the flap deflection
iavestigation is presented in Figure 57. The effect of flap
deflection on lift curve slope (CL ) shows an increase from 0.0972
to 0.120 at 20 to 40 degrees. At zhis speed the lift coefficient
equivalent to 13,500 LB is 0.985, which was added to Figure 57

and indicates the "1lg" level flight can be achieved with a flap
deflectién of 40 degrees with a fuselage attitude of minus one.
degree after correcting for the model drag increment ACH = 0.1,

The corresponding yawed flight aircraft performance is presented in
Figure 58. This shows there is no change in 1lift or propulsive
force with yaw. Increases in rotor thrust indicated in Section

4.2.1 are apparently just large enough to offset the increase in

airframe drag.

Effect of forward speed on aircraft performance are presented in
Figures 59 and 60, showing the pitch and yaw influence. This
data summarizes all the performance data obtained during this test

program.
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4.3 COMPARISON OF TEST AND THEORY

Tc determine the validity of the methodology being utilized to design
and build the tilt rotoi, provides én addition objective to this
program. Figure 61 shows the variation of rotor thrust with power
fbr transition, presented in Section 4.1.1, corrected for hub

tares and Reynolds number and reducing the lateral and longitudinal
cyclic to zero. It is compared with the theoretical valuésﬂobtaihed

from D88 computer prdgram and shows good correlation.

Tkis theory is an aefoelastic»analysis for the stuyd of_aerodynamic
dyrnamic and structural characteristics of current and advanced

rotor and prop/rotor concepts. Airloads are calculatea cbnsidering
the effects of section geometry, compressibility and non-uniform

in rlow. An iterétive process between the airloads and coupled fiap—
pitzh dynémic response establishes blade accelerations which in turn
are used to computé hub loads and rotor aerodynamic performance.
This program was used to compute the transition rotor performance
(thrust, power and collective relationships), static stability
(inplane forces and moments) and the cyclic control characteristiésf
A complete description of this analysis, D-88 computer program is

contained in Reference 2.

The comparison of test data and theory in the cruise mode is pre-
sented in Figure 62. This prediction is made on VASCOMP II, and
aircraft sizing program. The test data is the integration of the
data in Section 4.2.1 and 4.2.2 and similating the cruise thrust
required for the full scale aircraft. This data is corrected for
Reynolds and the resulting performance comparison appears to be

uite cood.
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5.0 STABILITY AND CONTROL

In evaluating the stability and control data obtained during this
test, it must be remembered that because of the Froude scaling used
for this dynamic model the test Reynolds numbers were low (0.6 x

6

10° for transition testing and up to 1.47 x los'maximum for cruise

testing). This results in values of CL and C lower than can

a Lmax

be expected full scale. The effects of Reynolds number contributes
to the difference in neutral point location in transition, rotors
cff, between test data and the predicted location. ‘Previous medel
tests indicated that the rotor derivatives and rotor effects on

the aircraft characteristics are not significantly affected by
Feynolds number. Addition testing at higher Reynolds number is
recommended with a larger unpowered model to determine the magnitude

of Reynolds number effects.
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5.1 Transition Stability and Control

This section addrésses the overall aircraft stability and control
as well as the individual contributions made by the rotor, £he
airframe and the controls in the transition flight regime. Transi-
tion includes all forward flight conditions for nacelle incidence
of 90 degrees to 0 degrees. The following sections will address
these items as they were covered in the testing directed at

Objectives 2,3, 4 and 8 presented in Section 2.0.
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5.1.1 Rotor Stability Derivatives

The rotor stability derivatives obtained from the testing in thell
transition flight regime is at 72 ft/sec tunnel velocity, which is
equivalent to 90 kts full scale. Nacelle incidence of approximately
42 degrees-was examined with flap deflections of 40, 30 and 20
degrées and a nacelle incidence of 30 degreeé with a flap deflection

of 30 degreés was also tested.

Effect of Flap Deflection on Pitch Derivatives

This testing was directed at defining the effect of wing lift on
rotor stability characteristics and aircraft performance in transi-
tion. Figﬁre,63 presents the variation of aircraft lift with

angle of attack for flap deflections of 20, 30 and 40 degrees with
the nacelle incidence of 41.6 degrees. The aircraft lift is approx-
imately ﬁhe same for 20 and 30 degrees but decreases for 40 degrees
flap deflection which is opposite to what is expected. Subtracting
out the rotor and spinner contribution provides the airframe data
presented in Figure 64. Increasing the flap deflection from

20 to 30 degrees results in an increase in lift. Increasinyg the

flap deflection further to 40 degrees shows a decrease in lift of
approximately the same magnitude. This is a result of decreased
collective producing a lower thrust as shown in Figure 65 and
results in a lower downwash and local dynamic pressure on the wing.
The rotor characteristics of normal force, pitching moment, side
force and yawing moment are presented in Figures 66 through 69, for
these flap deflections. Figure 70 shows the variation of collective
and cyclic during this series of test runs and was used to define

the specific test data points that should be utilized in
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the data fairing. The rotor derivatives with angle of attack are

summarized in the following table.

TUNNEL | ADVANCE FLAP 3C 3C aC 3C
SPEE RATIO |DEFLECTION NF PM SF M
\"A u ) da o0 da ' Ja
72 0.206 20° 0.000033 | 0.000032 |-0.0000305|-0.000005
fps - , .
30° 0.000028 | 0.000032 |-0.0000122{-0.0000075
40° 0.000026 | 0.000034 {-0.0000122|-0.000006

This data shows the general impact of wing lift decreasing the
normal force and yawing moment derivatives while increasing the
side force and pitching moment derivatives. ‘The amount of change
in the derivatives is slight and the overall change ih level asso-
ciated with the flap deflection cannot be readily extracted from
the data. Since the cdrrections required to remove the cyclic is
large and the variation in 1lift is small, any slight deviation in
the correction would significantly affect the resulting trend with

lift. To accomplish this objective will require further testing.

Rotor Directional Stability at 41.6° Nacelle Incidence

At the nacelle incidence of 41.6 degrees and 40 degrees flap dé-
flection, a yaw sweep was made to define the directional stability
characteristics. For this investigation the wing lift did not vary
and is shown in Figure 71. The rotor characteristics obtained

from this run are presented in Figures 72 through 75. Similar data
was obtained for a nacelle incidence of 30 degrees with its

cocrresponding flap deflection of 30°. These rotor normal force,
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presented in Figures 76 through 79.

derivatives for these two test conditions are shown below.

pitching moment, side force and yawing moment characteristics are

A comparison of the rotor

TUNNEJ ADVANCE |NACELLE |FLAP |
SFEED { RATIO INCI- |DEFLEC-| 4¢ | sc 3C 3C
v ¥ DENCE TION NF_ | PM SF YM
! N Y | Y 3y Y
» i
72 . 0.206 41.6° | 40° D.0000027 ~0.000020(0.000026 (00000276
frs ’ % ;
} ‘ |
72 {0,206 30° 30°  p.000008 {-0.000029/0.0000254 |0.000037
£ps i | |
A ‘ ! i | i

remains unchanged and the pitching moment decreases.

Effect of Nacelle Incidence on Rotor Longitudinal Stébili;x

in Figures 80 to 83.

and the rotor characteristics were obtained.

There is a significant increase in normal force and yawing moment

derivatives as nacelle incidence is decreased while the side force

Whi.e at a nacelle incidence of 30° a pitch attitude sweep was made

This data is presented
A summary of these derivatives is shown below

compared to the data obtained at 41.6° nacelle incidence discussed

{
é

parlier.
i
TUNNEL | ADVANCE |NACELLE | FLAP ‘ i %
SPEED | RATIO |INCI- DEFLECH N 5C ' ac . aC
\Y u DENCE TION NF | PM SF : YM
N Sg ? x E 3¢ | 3ot j Do
‘ T i +
72 0.206 41.6° ; 40° | 0.000026§0.000032;-0.0000122 -0.00000p
o . | |
;2 1 0.206 30° i 300 0.000045}o.oooo41§—o.oooo34{ 0.0000075
ps | i :
i
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2s the nacelle incidence is decreased the rotor derivatives are
increasing and producing a more unstable contribution to the air-
craft stability. To provide an understanding of the nacelle inci-
dence effect, a run was made at a fixed fuselage attitude and rotor
thrust coefficient while varying the nacelle incidence. The cyclic
was varied to provide minimum blade loads at each incidence. The
effect on aircraft lift, presented in Figure 84, indicates that the
lift is increasing as a result of the increase in vertical component
of thrust. The associated impact on rotor characteristics indicates
that the normal force is decreasing and the pitching moment isA
increasing with decreésing nacelle incidence. There is approx-
imately no change in the rotor contribution to the aircraft
longitudinal stability since the moment produced by the normal force
rrades off in magnitude with the rotor hub moment as indicated in

rigure 85 and 86.
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